ATIS’ Value Driven Mission and Role as a 3GPP Founder

ATIS strategic initiatives and solutions/standards work progresses new business opportunities, solves common industry challenges, and creates a platform for collaboration with other industries:

• Members innovate and compete “on top of” ATIS’ foundational work

• Collaborative efforts across industries can lead to greater scale and customer adoption

Identifying and defining where and how to align and collaborate; sharing resources, effort and cost to develop large-scale, interoperable solutions for a “common industry good” is both critical and beneficial to the industry. ATIS is the catalyst

ATIS advances international cooperation and is a founding partner of 3GPP
Agenda

Opening/Overview

Services

Systems Architecture and Core Networks

Radio Access Network

Long Term Outlook

Q&A: Please submit questions via chat during the webinar
Any organization that designs a system will produce a design whose structure is a copy of the organization's communication structure.
— Melvin E. Conway

1. Services - Greg
2. Systems Architecture - Puneet
3. Radio Access Network - Wanshi

TSG = Technical Specification Group
WG = Working Group
3GPP Release Roadmap

Rel. 16
Enhanced support for broadband and vertical use-cases

Rel. 17
Protocol Coding Freeze – June 2022

Rel. 18
Advanced technologies and applications, e.g. AI/ML, XR, high frequency bands

Rel. 19
Content Package Agreed – Dec. 2021/March 2022

New vertical users, applications, deployment models, spectrum

<table>
<thead>
<tr>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
</table>
April 2022 - 3GPP Specifications Release Status

• Release 17
 • Most protocol work is frozen except for essential corrections
 • Protocol coding (“ASN.1”) freeze is on target for June 2022
 • **Focus moving from standardization to deployment**
 • The RAN and System Architecture presentations today will introduce Release 17’s technical capabilities

• Release 18 *5G-Advanced*
 • Package of work to define scope has been approved by 3GPP
 • Target freeze mid-2024
 • The services presentation today will introduce service topics in Release 18

• Release 19
 • Work stated on service definitions
RELEASE 17 SERVICE PERSPECTIVE ("SA1")

Greg Schumacher, T-Mobile USA

April 20th, 2022
3GPP SA 1’s role - overview

• Develop new & enhanced services, features and capabilities for:
 • 3GPP specifications
 • Interworking with services defined by SDOs external to 3GPP
• 3GPP IM entry point for vertical market’s 3GPP service, feature and capability needs
• Define corresponding stage 1 requirements for downstream 3GPP groups
• Study Items (SIDs) result in use cases and potential requirements
• Work Items (WIDs) result in normative (downstream) requirements
SA 1 Release 17

• Recap from previous ATIS presentation
• Majority of work areas
 • eCAV – Enhanced cyber-physical control (industrial/factory vertical)
 • AVPROD – AV service production (A/V production vertical)
 • ATRAC – Asset tracking (warehouse vertical)
 • CMED – Critical Medical Applications (medical vertical)
 • EAV – UAV enhancements (drone vertical)
 • 5GSAT – Satellites use in 5G (satellite vertical)
 • REFEC – Enhanced relays for coverage and energy efficiency (various verticals)
 • MUSIM – Support multiple USIMs per UE
 • NCIS – Network controlled interactive service

A complete overview of R17 enhancements can be found in TR 21.917 Release `17 Description: Summary of Rel-17 Work Items—finalization expected around end of 4Q22
SA 1 Release 18 (1/2)

• SA 1 has completed R18 work and is onto R19 efforts
• Work areas for vertical markets
 • 5GSATB - Satellite backhaul (satellite vertical)
 • SVCS - Satellite access for video surveillance (satellite vertical)
 • EXPOSE - Service exposure for verticals (various verticals)
 • LPHAP - Low power high accuracy positioning (industrial/factory vertical)
 • SEI - Smart energy and infrastructure (power grid vertical)
 • 5TRS – Timing resiliency service (various verticals)
• Work areas (not vertical market specific)
 • PIN/Pirates - Personal IoT networks
 • Resident/Pirates - Residential 5G networks
 • Ranging – UE ranging service and sidelink positioning
 • AMMT – AI/ML model transfer (network – UE)
 • EASNS- Enhancements to network slicing
 • eMMTEL - IMS evolution
 • TACMM – UE tactile & multi-modal communication (gaming, robotic control)
 • VMR – Vehicle mounted relays
 • PALS – Access to localized network services
 • SFChain - Service function chaining
<table>
<thead>
<tr>
<th>TSG#</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Stage 1**: 80% → 100%
 - RAN, SA2 Content def.

- **Stage 2 (SA2, SA6, ...) Normal**: Nom
- **"RAN Completion" (RAN2/3/4 Core)**
 - Stage 3 (CT & SA)

- **Reminder on Release 18**

- **Release 19 Proposal**

- **SA1 Content Def.**
 - SiDs presentation
 - SiDs agreement
 - Stage 1: 80% → 100%

- **SA1#**: 96 97 98 99 100 101 102 103 104
SA 1 R19

• R19 work in process
 • 26 SIDs have been presented, 6 agreed in 1Q22
 • SID discussion and agreement will continue in 2Q22

• Working schedule in SA 1 (subject to overall R19 schedule)
 • 2Q22 – R19 SID agreement + prioritization (if needed)
 • 2Q23 – R19 SID/WID 80% complete
 • 3Q23 – R19 SID/WID 100% complete
3GPP REL-17 SA2 FEATURES

Puneet Jain
3GPP SA2 Chair
Sr. Principal Engineer & Sr. Director, Intel Corporation

April 20, 2022
5G: Evolutionary and Revolutionary

Standards

- **Rel-15**
 - Q4 ‘18
 - eMBB (Capacity, Data Rates)
 - Service Based Architecture
 - End to End Network slicing
 - Enhanced QoS
 - Network Capability Exposure
 - Session and Service Continuity (SSC) modes
 - Location Services support
 - Emergency and IMS Services
 - Support for untrusted non-3GPP access (aka untrusted WiFi integration)

- **Rel-16**
 - Q2 ‘20
 - Enterprise / Mission-Critical
 - Cellular IoT
 - IIoT - 5G LAN, NPN, and TSN
 - URLLC Enhancements
 - NW Automation/Analytics
 - Wireless and Wireline convergence
 - Access Traffic Steering, Switching, and Splitting
 - Advanced V2X services
 - UE capability signaling optimizations

- **Rel-17**
 - Q1’ 22
 - Expand 5G Market reach / Further Enhancements
 - Enhancements for Edge Computing
 - IIoT - TSN, NPN – Phase2
 - Network Automation, – Phase2
 - ATSSS Phase-2
 - Support for Unmanned Aerial System (UAS)
 - 5G D2D/Proximity services
 - 5G Multicast-Broadcast services
 - Interactive cloud services support
 - Non-Terrestrial Networks
 - 5G Location services – Phase2
 - Multi-USIM devices Support

- **Rel-18**
 - TBD

Deployments

- **2020 - 2021**
 - Broad 5G network rollouts – mostly phones, PCs, CPEs

- **2021 - 2023**
 - 5G enables IIoT / smart manufacturing and smart cities

- **2023 & beyond**
 - 5G for vehicles, agriculture, healthcare and more
• **Rel-15**: Deliver baseline NR functionality to meet eMBB (enhanced Mobile Broadband) and URLLC (Ultra-Reliable Low Latency Communication) requirements of 5G technology

• **Rel-16 (aka 5G Phase 2)**: continuation of Rel-15 to fully address the original 5G vision

• **Rel-17 is more evolutionary in nature**
 • Expand the market reach of 5G technology
 • 5G for satellite; IoT services; Public safety and mission critical services, Support for Edge Computing and Interactive Cloud Services, Support for Unmanned Aerial Systems (UAS), etc.
 • Address additional requirements from mobile operators and verticals
 • Enhancements, performance and efficiency improvements targeting Industrial, V2X, mMTC, and eMBB uses cases
 • Network evolution (Network Slicing enhancements, IAB enhancements)
Enhancement for Support for Edge Computing

- Discovery of Edge Application Server
- Seamless Edge Relocation
- Network Exposure to Edge Application Server
- Support of 3GPP Application Layer Architecture
- DNAI based (I-)SMF selection

![Diagram of 5GC Connectivity Models for Edge Computing]
Relationship of SA2 and SA6 EC studies

SA2 FS_enh EC SI: Define network layer solutions to support UE connectivity with EAS

- EAS discovery via DNS
- Edge relocation (focusing on user path relocation, session continuity, coordination with AF)
- Network information exposure from 5GC to AF (e.g. EES/EAS) with low latency
- Traffic local routing to EAS (I-SMF insertion/reselection)

SA6 EDGEAPP SI: Defines middle layer platform for edge computing

- EAS registration/discovery via middle layer (ECS/EES)
- EAS relocation (focusing on application context relocation)
- Capability exposure from EES to EAS

Complementary solutions

Solutions for same issue but resolve in different layers

EAS: Edge Application Server
EES: Edge Enabler Server
ECS: Edge Configuration Server
EEC: Edge Enabler Client
EHE: Edge Host Environment

Different layer of edge computing
Enhanced support of Non-Public Networks

- Support SNPN (standalone private network) with subscription / credentials owned by an entity separate from the SNPN
 - Introduce the broadcast information (e.g. indication that a SNPN supports separate credentials etc.) to support network selection
 - Support is uniform over the whole SNPN
 - No impact to idle mode mobility and connected mobility from Uu side

- Support UE onboarding and provisioning for SNPN
 - Devices connecting to the network for the first time are allowed at least the baseline connectivity and networking services for SNPN provisioning

- Support of IMS voice and emergency services for SNPN
Enhanced support of Industrial Internet of Things

- Uplink Time Synchronization
- UE-UE TSC communication
- Exposure of deterministic QoS
- Exposure of Time Synchronization
- Use of Survival Time for Deterministic Applications in 5GS
Enablers for Network Automation for 5G – Phase 2

- NWDAF is decomposed into:
 - **Analytics logical function (AnLF):** The NWDAF provides analytics to 5GC NFs and OAM.
 - **Model Training logical function (MTLF):** NWDAF may provide trained models and exposes new training services to other NWDAFs.

- Pre-trained ML model storage and provisioning to NWDAF is out of the scope of 3GPP.

- The interactions between 5GC NF(s) and the NWDAF take place within a PLMN

- The service consumer (5GC NFs, OAM) decide how to use the data analytics provided by the NWDAF.

- NF: 5G Network Function (e.g., SMF, AMF, PCF)
- AF: Application Function
- NWDAF: Network Data and Analytics Function
- ADRF: Analytics Data Repository Function
- DCCF: Data Collection and Coordination Function
- AnLF: Analytics logical Function
- MTLF: Model Training logical Function
- Steering Modes
- Additional Steering Functionalities
- Supporting MA PDU with 3GPP access leg over EPC and Non-3GPP access leg over 5GC
Support of Unmanned Aerial Systems Connectivity, Identification and Tracking

- UAV identification
- UAV authorization by UTM
- UAV and UAV Controller tracking
- UAV authorization revocation and (re)authorization failures
- UAV Controller and UAV association
- User Plane Connectivity for UAVs
5G Proximity based Services

- ProSe Direct discovery
- Support of NR PC5 ProSe communication
- Support of UE-to-Network Relay
- Support direct communication path selection between PC5 and Uu
- Support of PC5 Service Authorization and Policy/Parameter Provisioning
5G Multicast/Broadcast Services

- MBS session management
- Definition of Service Levels
- Levels of authorization for Multicast communication services
- QoS level support for Multicast and Broadcast communication services
- Local MBS service
- Reliable delivery method switching between unicast and multicast
- Minimizing the interruption of public safety services upon transition between NR/5GC and E-UTRAN/EPC
Enhancement to the 5GC LoCation Services – Phase 2

- UE Positioning Capabilities storage in AMF
- Multiple QoS Class
- Non-3GPP support for UE Position
- Scheduled Location Time
- Satellite RAT Type in LMF selection

LRF: Location Retrieval Function

GMLC: Gateway Mobile Location Centre
Other Rel-17 enhancements

• 5G System Enhancement for Advanced Interactive Services (5G-AIS).
• Multimedia Priority Service (MPS) Phase 2:
• Support of advanced V2X services - Phase 2
• Architecture aspects for using satellite access in 5G.
• Efficient support of devices with Multi-USIM
• Enhancement of Network Slicing Phase 2

• Architecture Enhancement for NR Reduced Capability Devices
 • Aim to support devices with capability between NR-IoT/eMTC and eMBB
 • Targeting IoT use cases such as industrial sensors, video surveillance. Interest in wearable device use case growing.
 • Capability reduction encompassing complexity, size, bandwidths, antennas, power consumption, etc

• Minimization of Service Interruption (MINT)
5G-Advanced – Capabilities Still to Come

Standards

Rel-18
Q4 ‘23

- Study on System Enabler for Service Function Chaining
- Study on Generic group management, exposure and communication enhancements
- Study on Access Traffic Steering, Switching and Splitting support in the 5GS; Ph3
- Study on enhanced support of Non-Public Networks - Ph2
- Study on Phase 2 for UAS, UAV and UAM
- Study on Extensions to the TSC Framework to support DetNet
- Study on 5G Timing Resiliency and TSC & URLLC enhancements
- Study on RedCap Phase 2
- Study on Vehicle Mounted Relays
- Study on 5GC LoCation Services Ph3
- Study on Edge Computing Ph2
- Study on 5G System with Satellite Backhaul
- Study on the support for 5WWC Ph3
- Study on Network Slicing Ph3

Rel-19
TBD

- Study on 5G AM Policy
- Study on Personal IoT Networks
- Study on evolution of IMS multimedia telephony service
- Study on 5G multicast-broadcast services Ph2
- Study on XR (Extended Reality) and media services
- Study on Ranging based services and sidelink positioning
- Study on System Support for AI/ML-based Services
- Study on Enhancement of 5G UE Policy
- Study on Enablers for Network Automation for 5G - Ph3
- Study on satellite access Ph2
- Study on UPF enhancement for Exposure And SBA
- Study on Proximity-based Services in 5GS Ph2
- Study on Seamless UE context recovery

Timing, features and enhancements TBD

For Rel-18, currently SA2 has 27 Study Items and 1 Work Item in progress
3GPP Release 17 RAN Features

Completing the first phase of the 5G evolution
To bring new system capabilities and expand 5G
to new devices, applications, and deployment

Wanshi Chen
3GPP TSG RAN Plenary Chair
Qualcomm Technologies Inc.

April 20th, 2020
Our presenter

Wanshi Chen
3GPP TSG RAN Chair
Sr. Director, Technology, Qualcomm Technologies, Inc.

Agenda

1. Where are we now with 5G?
2. What new 5G technologies are in Release 17?
3. How will 5G Advanced take us closer to 6G?
4. Questions?
5G Accelerating Globally

- 205+ Operators with 5G commercially deployed
- 280+ Additional operators investing in 5G
- 750M+ 5G smartphones to ship in 2022
- 1B+ 5G connections by 2023 — 2 years faster than 4G
- 5B+ 5G smartphones to ship between 2020 and 2025
- 1275+ 5G designs launched or in development

Sources — 5G commercial networks, operators investing in 5G: GSA, Feb '22. 5G device shipment projections: Qualcomm estimates, Feb '22. 2023 5G connection projections: average of ABI (Sep '21), Ericsson (Jun '21) and GSMA Intelligence (Sep 20–'21). 5G cum. smartphone shipments: average of CCS Insight (Sept '21), Counterpoint Research (Dec '21), IDC (Nov '21), Strategy Analytics (Oct '21). Launched / announced devices: GSA, Feb '22.
Driving the 5G technology evolution in the new decade

Rel-15 eMBB focus
- 5G NR foundation
- Sub-7 and mmWave
- Scalable & forward compatible
- Basic URLLC support
- mMTC via eMTC & NB-IoT

Rel-16 industry expansion
- Unlicensed spectrum (NR-U)
- Enhanced URLLC
- New functionalities: Sidelink (NR V2X), Positioning
- 5G broadcast
- eMTC/NB-IoT with 5G core
- Topology: IAB
- eMBB enh: MIMO, device power, CA/DC, mobility

Rel-17 continued expansion
- mmWave extended to 71GHz
- Lower complexity “NR-Light” (RedCap)
- Non-terrestrial communication (satellites): NR NTN and NTN IoT
- Improved IoT, positioning, V2X
- Enhanced IAB, RF repeaters

Rel-18+ 5G-Advanced
- Next set of 5G releases (i.e., 18, 19, 20, …)
- Rel-18 scope decided in Dec ‘21
- Rel-18 study/work to start in Q2-2022

1. 3GPP start date indicates approval of study package (study item->work item->specifications), previous release continues beyond start of next release with functional freezes and ASN.1
A key 5G milestone: 3GPP Release 17 Completion
Functional freeze in March 2022 and ASN.1 freeze expected in June 2022

New and enhanced 5G system capabilities

- Further enhanced massive MIMO
- Coverage enhancements
- Device power savings
- Spectrum expansion (60 GHz)
- Enhanced IAB and RF repeater
- Further enhanced URLLC, private networks, others...
- Expansion to new 5G devices and applications
- Sidelink expansion
- Broadcast/multicast expansion
- NR-Light (RedCap), enhanced mIoT
- Non-terrestrial networks (NTN)
- Enhanced precise positioning
- Boundless XR study, others...
Strengthen the end-to-end 5G system foundation

Further enhancing 5G mobile broadband and expanded use cases
Further enhancing 5G massive MIMO performance

Focus areas for Release 17 Work Item

Enhanced multi-beam operation
- Unified TCI\(^1\) framework in DL/UL\(^2\) to reduce latency and overhead
- UL beam selection for multi-panel devices
- More efficient L1/L2\(^3\) intra-and inter-cell mobility

SRS\(^7\) improvements
- More flexible triggering of aperiodic SRS and DCI\(^8\) overhead reduction
- SRS switching for up to 8 antennas
- Improved SRS reliability such as repetitions and time bundling

Enhanced multi-TRP\(^4\) deployment
- Improved reliability for DL control, UL control and data channels
- QCL\(^5\) for inter-cell multi-TRP reusing L1/L2 mobility measurements
- Beam management for multi-panel Rx
- High-speed SFN\(^6\) enhancements

CSI\(^9\) measurement & reporting
- DL/UL reciprocity of angle and delay for FDD\(^10\)
- More dynamic channel/interference hypotheses for non-coherent joint transmission

Source: RP-212535 (Further enhancements on MIMO for NR)

1 Transmission Configuration Indicator; 2 Downlink/Uplink; 3 Layer-1/Layer-2; 4 Transmission and Reception Points; 5 Quasi Co-Location; 6 Single Frequency Network; 7 Sounding Reference Signal; 8 Downlink Control Information; 9 Channel State Information; 10 Frequency Division Duplex
Improving 5G uplink coverage

Targeting urban and rural deployments using sub-7 GHz and mmWave, also applies to satellites (NTN¹) communication

- **Uplink data channel (PUSCH²) enhancements**
 Increasing the maximum numbers of repetitions, supporting transport block processing over multiple slots, and enabling joint channel estimation across multiple transmissions and frequency hopping

- **Uplink control channel (PUCCH³) enhancements**
 Supporting dynamic repetitions for better reliability, DMRS⁴ bundling across repetitions based on similar mechanisms for enabling joint channel estimation for PUSCH

- **Message 3 enhancements**
 Supporting Type A PUSCH repetitions for capability signaling, barring, and early indication

Source: in RP-211566 (NR coverage enhancements)

¹ Non-terrestrial Network; ² Physical Uplink Shared Channel; ³ Physical Uplink Control Channel; ⁴ Demodulation Reference Signal

Coverage enhancements Work Item
3GPP Release 17

Improving 5G uplink coverage

Targeting urban and rural deployments using sub-7 GHz and mmWave, also applies to satellites (NTN¹) communication
Further enhancing device power efficiency

For idle/inactive mode

Techniques to reduce unnecessary device paging reception (false alarms) without impacting legacy devices

Providing potential TRS\(^1\)/CSI-RS\(^2\) to devices in idle/inactive mode with minimized system overhead impact

Supporting PDCCH\(^3\)-based permanent equipment identifier (PEI)

For connected mode

Extending to Rel-16 DCI\(^4\)-based power saving adaptation for an active BWP\(^5\), including PDCCH monitoring skipping during C-DRX\(^6\)

Relaxing device measurement for RLM\(^7\) and/or BFD\(^8\) for low mobility devices with short DRX\(^9\) cycle
Scaling 5G NR design to support 60 GHz unlicensed band

Expansion of low/mid band spectrum

Potential 5G band in study

Supported mmWave bands in Rel-15

Common framework

Common framework

Prioritized expansion of mmWave to 71 GHz in Rel-17

Further mmWave expansion targeting future releases

Potential bands for future study

410 MHz
24.25 GHz
52.6 GHz
71 GHz
114.25 GHz

Sub-7 GHz: "FR1" (Up to 7.125 GHz)

mmWave: "FR2-1" (24.25 – 52.6 GHz)

mmWave: "FR2-2" (52.6 – 71 GHz)

SCS for control/data channels

Leveraging existing design of 120 kHz, and scaling to wider numerology of 480 kHz and 960 kHz

SSB numerology

Supporting 120 kHz (480 kHz optional) for initial access, 120 kHz (480 kHz, 960 kHz optional) for non-initial access, and 64 SSB beams

Channel access mechanisms

Supporting flexible deployment in unlicensed spectrum utilizing LBT, directional LBT, or no LBT

Beam management

Reusing designs based on existing mmWave frequency range (FR2-1) established in Release 15 and 16

Design Principles
Further enhancing ultra-reliable, low-latency communications

Release 17 Work Item targeting to meet more stringent requirements of Industry 4.0 applications

Enhanced physical layer feedback
- Improved device feedback for HARQ-ACK\(^1\)
- New mechanism triggered aperiodic CSI\(^2\) and SRS\(^3\) for more accurate MCS\(^4\) selection
- Improved reliability with uplink control\(^5\) on two carriers
- Subband CQI\(^6\) with more granularity

Improved compatibility for unlicensed spectrum
- Supporting device-initiated COT\(^7\) for FBE\(^8\)
- Harmonizing uplink configured-grant enhancements in Rel-16 NR-U\(^9\) and URLLC\(^10\) to be applicable for unlicensed spectrum

Intra-device multiplexing and prioritization
- Handling low-priority traffic on eMBB without impacting data flow in case of URLLC concurrency
- Parallel PUCCH and PUSCH\(^11\) transmissions on different component carriers for inter-band CA\(^12\)

Enhanced time synchronization
Supporting uplink RTT\(^13\) based method for TSN\(^14\) and improved propagation delay compensation

Intra-device multiplexing and prioritization
Handling low-priority traffic on eMBB without impacting data flow in case of URLLC concurrency
Parallel PUCCH and PUSCH\(^11\) transmissions on different component carriers for inter-band CA\(^12\)

Network enhancements
Based on new QoS\(^15\) related parameters such as survival time, burst spread

Source: RP-210854 (Enhanced Industrial Internet of Things and ultra-reliable and low latency communication support for NR)

1 Hybrid Automatic Repeat Request Acknowledge; 2 Channel State Information; 3 Sounding Reference Signal; 4 Modulation and Coding Scheme; 5 PUCCH - Physical Uplink Control Channel; 6 Channel Quality Indicator; 7 Channel Occupancy Time; 8 Frame Based Equipment; 9 NR Unlicensed; 10 Ultra Reliable Low Latency Communication; 11 Physical Uplink Shared Channel; 12 Carrier Aggregation; 13 Round Trip Time; 14 Time Sensitive Networking; 15 Quality of Service
Efficiently expand 5G mmWave coverage

New mmWave infrastructure options introduced as part of Release 17

Source: RP-213514 (WID for NR Repeaters); RP-213668 (WID for IAB enh)
Proliferate 5G to virtually all devices and use cases

Continued expansion to new device types and tiers – fulfilling the 5G vision
5G NR: A unified, scalable air interface allowing coexistence of a wide range of 5G device classes

1 Also including satellite access; 2 Data rate of 150 Mbps DL / 50 Mbps UL, latency of 10-30 ms, 10-3 to 10-5 reliability, coverage MCL of 143 dB; 3 Data rate of 1Mbps, MCL of 155.7 dB (eMTC) and 164 dB (NB-IoT)
Scaling down 5G NR for lower complexity IoT devices

Source: RP-211574 (Support of reduced capability NR devices)
Continued 5G massive IoT evolution with eMTC/NB-IoT

Release 17 Work Item enhancements

5G Massive IoT Data Rates

- **eMTC** enhancements
 - Supporting larger TBS\(^1\) sizes and 14 HARQ\(^2\) processes to increase data rate for half-duplex FDD\(^3\) devices
 - Supporting power boosting for devices with PUSCH\(^4\) sub-PRB\(^5\) resource allocation
 - Adding an optional device capability to support a maximum DL TBS of 1,736 bits for half-duplex FDD devices

- **NB-IoT** enhancements
 - Supporting 16-QAM for UL and DL unicast, increasing in maximum TBS sizes for DL compared to Rel-16 NB-IoT and extended channel quality reporting
 - Reducing the time taken to recover from RLF\(^6\), with new signaling for neighbor cell measurements and triggering
 - Introducing carrier selection based on coverage level and associated carrier specific configurations

Source: RP-211340 (Additional enhancements for NB-IoT and LTE-MTC)

1 Transport Block Size; 2 Hybrid Automatic Repeat Request; 3 Frequency Division Duplex; 4 Physical Uplink Shared Channel; 5 Physical Resource Block; 6 Radio Link Failure
Release 17 establishes 5G NR support for satellites communication

5G NR for NTN
Complementing terrestrial networks in underserved areas

- LEO, GEO, HAPS, air-to-ground communications
- Supporting satellites backhaul communication for CPEs and direct link to handhelds (e.g., smartphones) for low data rate services
- Utilizing sub-7 GHz S-band with additional bands added in the future (e.g., 10+ GHz in Rel-18 proposed)

5G IoT for NTN
Expanding addressable market for the 5G massive IoT

- LEO, GEO, PC3/PC5 satellites with intermittent access link
- Supporting diverse use cases, including transportation, utilities (e.g., solar, oil/gas), farming, mining, environmental monitoring
- Utilizing sub-7 GHz band for both eMTC and NB-IoT, with LTE EPC only in standalone network

Source: RP-210908 (NTN Enhancements); RP-211601 (NB-IoT/eMTC support for Non-Terrestrial Networks)

1 Enhanced Packet Core
Release 17 Work Item expands sidelink to new use cases

Release 17 Sidelink Enhancements
For public safety, IoT, commercial use cases and beyond

Updated sidelink evaluation methodology
Reusing existing evaluation assumption and performance metric\(^1\), based on feedback from car manufacturers

Improved resource allocation
Reducing device latency, power consumption, and improving reliability (e.g., half duplex, collision detection indication, control forwarding, inter-device coordination)

Power saving enhancements
Defining sidelink DRX for broadcast, groupcast, unicast, and power-efficient resource selection for devices

New sidelink frequency bands
Ensuring sidelink and network communication coexistence in the same and adjacent channels in licensed spectrum

Geographic confinement
Limiting sidelink operations to be within a predetermined area for a given frequency range in non-ITS\(^2\) bands

Sidelink relay
L2/L3 device to network relay for coverage extension, Follow-up work Item for device-to-device relay in scope for Release 18

Source: RP-202846 (NR Sidelink enhancement); RP-212601 (NR Sidelink Relay)
1TR 36.843 and/or TR 38.840; 2 Intelligent Transport System
Pushing forward with the 5G positioning technologies

5G positioning evolution

Source: RP-210903 (NR Positioning Enhancements); RP-201518 (Positioning use cases for V2X & PubS)

Release 16
Establishing foundation
Achieving accuracy of 3m/10m (indoor/outdoor) for 80% of time
Supporting RTT\(^1\), AoA/AoD\(^2\), TDOA\(^3\), single-cell positioning
Including new evaluation scenarios, i.e., industrial IoT

Release 17
Enhancing capability and performance for a wide range of use cases\(^4\)

Centimeter-level accuracy
Meeting accuracy requirements for commercial use cases (<1m) and IoT (<0.2m within 100ms)
- Mitigating device and base station Rx/Tx timing delays
- Improving accuracy for UL AoA and DL-AoD positioning
- Enhancing information reporting for multipath & NLOS\(^5\) mitigation

Reduced positioning latency
Optimizing positioning latency to as low as 10ms, related to the request/response of location, device measurement time and gaps

Improved efficiency
Scaling to higher capacity by supporting device positioning in inactive state and on-demand PRS\(^6\), triggered by network or device

GNSS\(^7\) enhancements
Improve the performance and efficiency for 5G positioning with assistance information from GNSS, supporting GNSS positioning integrity determination, BeiDou positioning signals (BDS B2a and B3I), and NavIC\(^8\) for 5G NR

5G Advanced
5G positioning evolution in Release 18+
Improving performance, expanding to new devices and deployments

5G positioning evolution 5G Advanced
Optimizing 5G NR for Boundless XR experiences

Release 17 Study Item for XR over 5G NR – Work Item in scope for Release 18

Use cases in scope
- Distributed computing
- Split rendering
- Viewpoint dependent streaming
- Conversational XR
- Cloud gaming

Traffic requirement
Identifying requirements for use cases in scope, such as roundtrip time, one-way packet delay budget, and packet error rate, taking different upper layer assumptions into consideration

Evaluation methodology
Assessing XR (including VR, AR) and cloud gaming performance along with identification of KPIs for relevant deployment scenarios

Performance evaluation
Carrying out characterization of XR system performance based on agreed upon evaluation methodologies
Adding support for 6/7/8 MHz carrier bandwidths to support UHF bands

Targeting low-latency broadcast distribution and 5G media streaming

Optimizing modem resource usage and enabling fast broadcast service discovery

Supporting group scheduling, mobility, DRX, reception in idle and transparent SFN

Enabling dynamic switching between unicast & broadcast (e.g., for public safety use cases)

Supporting uplink HARQ feedback and retransmissions for link adaptation and reliability

Source: RP-211144 (New bands and bandwidth allocation for LTE based 5G terrestrial broadcast); RP-201038 (Revised Work Item on NR Multicast and Broadcast Services)

1 Ultra high frequency, i.e., 470 to 698 MHz; 2 In additions to currently support carrier bandwidths of 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz; 3 Common media application format; 4 Discontinued Reception; 5 Single Frequency Network; 6 Hybrid Automatic Repeat Request

Continue to evolve the end-to-end design for 5G broadcast
DSS1 enhancements
Enable PDCCH2 cross-carrier scheduling from a SCell3 to a P(S)cell4 in sub-7 GHz

Enhanced multi-radio DC5
Support efficient activation/de-activation of one SCG6 and SCells, and conditional PSCell change/addition

Multi-SIM7
Support dual-standby, 1 active and 1 idle SIM, device-indicating network switch, and SIM from different MNOs8

Higher-order modulation
Support 1024-QAM for downlink and 256-QAM for sub-7 GHz uplink communication

Small data transmission
Allow uplink data in inactive mode (in either 2-step or 4-step RACH9) with defined small data request message

High-speed train
Optimize 5G support for high-speed trains for both sub-7 GHz and mmWave

Uplink data compression
Utilize LTE procedure as baseline for 5G NR Standalone mode only

Enhanced data collection
Add new data categories for SON/MDT10 (mobility, energy saving, capacity, coverage,…), and for RAN AI (use cases, types of input/output)

RAN11 slicing
Support slice-based cell reselection, RACH configuration, service continuity, enforcement of slice maximum bit rate

Enhanced private network
Access to standalone private networks using credentials from a different entity, IMS voice, emergency services.

Quality of experience
Enable measurement collection in Standalone mode with mobility continuity and per-slice support.

User-plane integrity protection
Strengthen 5G security with integrity protection for user-plane in addition to control-plane using 5G NR PDCP12

Source: RP-211345 (NR Dynamic spectrum sharing); RP-201040 (Further Multi-RAT Dual-Connectivity enhancements); RP-213679 (Multi-SIM?); RP-202886 (NR DL 1024-QAM); RP-212594 (NR small data transmissions in INACTIVE state); RP-210833/210800 (NR High Speed Train); RP-211203 (NR Uplink Data Compression); RP-212534 (Enhancement of RAN Slicing for NR); RP-213574 (Data collection for SON/MDT); RP-201620 (Enhancement for data collection for NR and ENDC); RP-211406 (NR QoE management and optimizations for diverse services); RP-212586 (Enhancement of Private Network Support); RP-213669 (UIPP support for EPC connected architectures)

How will 5G Advanced bring us a step closer to 6G?

Continued evolution towards 6G
Leading the 5G Advanced technology evolution on the path to 6G
Creating new value across applications
Driving a balanced 5G evolution across key technology areas

Mobile broadband evolution vs. further vertical expansion

Deliver enhanced mobile broadband experiences and extend 5G’s reach into new use cases

Immediate commercial needs vs. longer-term 5G vision

Drive new value in commercialization efforts and fully realize 5G’s potential with future deployments

New and enhanced devices vs. network evolution

Focus on the end-to-end technology evolution of the 5G system to bring new levels of performance

Release 18 scope takes into consideration of the 5G Advanced evolution in Release 18, 19, and beyond (i.e., many Study Items defined to set up for Work Items in later releases)
3GPP Release 18 sets off the 5G Advanced Evolution

Approved package has a wide range of projects – nominal work to start in Q2 2022

Strengthen the end-to-end 5G system foundation

- Advanced DL/UL MIMO
- Enhanced mobility
- Mobile IAB, smart repeater
- Evolved duplexing
- AI/ML data-driven designs
- Green networks

Proliferate 5G to virtually all devices and use cases

- Boundless extended reality
- NR-Light (RedCap) evolution
- Expanded sidelink
- Expanded positioning
- Drones & expanded satellites comm.
- Multicast & other enhancements
PROGRESS TOWARDS 6G AND CONCLUSION

Iain Sharp
Principal Technologist

atis
ATIS Next G Alliance – Building the Foundation for North American Leadership in 6G and Beyond

• Next G Alliance membership covers a broad ecosystem:
 • Operators, Vendors, Hyperscalers, Academia, Government, Research Labs

• Next G Alliance “Roadmap to 6G” report and presentations are available at:
 • roadmap.nextgalliance.org

• Foundation for North American 6G Vision and Leadership
Foundations for Next G Alliance 6G Vision

Audacious Goals create the framework for advancing North American leadership and positioning a robust 6G marketplace.

North American 6G Roadmap defines the path for connecting every stage of the lifecycle and progressing to an end-of-decade 6G Vision.

6G Leadership Priorities incorporate innovative applications, societal needs, economic goals, government actions and technology developments.
Conclusion – Successfully Advancing 5G Goals and Preparing for 6G

- 3GPP is successfully evolving the 5G platform to enhance performance, efficiency and meet new use-cases
- Completing 3GPP Release 17 in the face of Covid-19 is a major achievement
- 3GPP Release 18 will herald the era of 5G Advanced
- Industry and nations are preparing for the next generational transition:
 - 5G will dominate the market for another decade
 - For 6G, now is the time to define the vision and research priorities