UTC and NIST Time

Judah Levine
NIST, Time and Frequency Division
Boulder, Colorado

Judah.Levine@nist.gov
Outline

- What is UTC?
- What is UTC(NIST)?
- Traceability
- Network Time Service (now)
- Network Time Service upgrade
- Remote System prototype
- Summary
Coordinated Universal Time (UTC)

- Computed by the International Bureau of Weights and Measures (BIPM, Paris)
 - Clock data contributed by National Laboratories
 - NIST, USNO, ...
- UTC is a purely paper time scale
 - No physical clock realizes UTC
UTC(NIST)

- Time scale maintained at NIST in Boulder, Colorado based on data from local atomic clocks
- UTC(NIST) is steered to UTC based on data received from the BIPM
 - Difference typically < 10 ns.
- UTC(NIST) is reference time for all NIST time services
Time Traceability - 1

- An unbroken chain of measurements from the end-user application back to the national reference time scale
- Each link in the measurement chain characterized by time delay and uncertainty
Time Traceability - 2

- Technical traceability:
 - Doing the right thing

- Legal traceability:
 - Being able to convince a judge and jury
 - Adequate log files
 - External monitoring

End-point traceability often difficult

Legal traceability often inadequate
GPS Traceability

- Broadcast data are predictions
 - Satellite time → System Time → UTC(USNO)
 - Satellite orbit (geometrical range)
- Troposphere correction (6 ns – 20 ns)
- Real-time offset up to 25 ns
Default Traceability

- Default traceability boundary:
 - GPS and other satellite systems
 - Signal in space
 - Internet and telephone time services
 - Server output
- Output of user equipment, end-user application not traceable by default
 - Unknown calibration, software latency, ...
- Full traceability generally requires active participation at all levels
NIST Network Time service (Now)

- 20 servers at various locations in the US
- Linked by telephone lines to UTC(NIST) in Boulder
- Millisecond-level service (mostly NTP)
 - Depends on network connection
 - MD5 and SHA-1 authentication supported
- About 230,000 requests per second
- 400+ registered users for authenticated services
Service Upgrade (next 3 months)

- Stand-alone remote systems at 3 sites
- Increased capacity, increased accuracy
- Time accuracy at the systems < 25 ns
- Local time reference
 - Independent of real-time GPS
 - Isolated from network attacks and failures
- All systems multiply redundant
 - No single point of failure
Prototype of Remote system

- Operating at NIST radio station WWV in Fort Collins, Colorado since 2005
 - 4,354 days
- System outages (all causes)
 - 162 minutes
 - Available fraction: 0.999 97
- Transmitted time error > 25 ns
 - 8 minutes
 - Available fraction: 0.999 999
No steering
Summary

- **Upgrade to NIST time services**
 - Remote reference accurate to < 25 ns
 - Independent of real-time GPS or external calibration link
 - Prototype Integrity, Availability
 - >99.99% based on 11 years of data
 - NTP, PTP, ...
 - Service accuracy limited by downstream links

- **Remote site location can be anywhere**
 - Minimize downstream delay uncertainty