Leading the path towards 5G with LTE Advanced Pro

Sanjeev Athalye, Sr. Director
Qualcomm Technologies, Inc.
May 2016
Progress LTE capabilities towards 5G

In parallel driving 4G and 5G to their fullest potential

Note: Estimated commercial dates. Not all features commercialized at the same time
Progress LTE capabilities towards 5G
In parallel driving 4G and 5G to their fullest potential

- Unified, more capable platform for spectrum bands below/above 6 GHz
- For new spectrum available beyond 2020, including legacy re-farming
- Fully leverage 4G investments for a phased 5G rollout
- Significantly improve cost and energy efficiency

Note: Estimated commercial dates. Not all features commercialized at the same time.
Proliferate LTE to new use cases

Connect the Internet of Things

High Performance

Low power/complexity

New ways to connect and interact

Evolving LTE-Direct

LTE V2X Communications

New classes of services

Digital TV broadcasting

Proximal awareness

Public safety

Latency-critical control

Extending the value of LTE technology and ecosystem
Extending LTE to unlicensed spectrum globally with LAA
Licensed Assisted Access (LAA) with Listen Before Talk (LBT)

Assumptions:
- 3GPP LAA evaluation model based on TR 36.889,
- two operators, 4 small-cells per operator per macro cell, outdoor,
- 40 users on same 20 MHz channel in 5 GHz, both uplink and downlink in 5 GHz,
- 3GPP Bursty traffic model with 1MB file, LWA using 802.11ac,
- DL 2x2 MIMO (no MU-MIMO), 24dBm + 3dBi Tx power in 5 GHz for LAA eNB or Wi-Fi AP.

Path to Gbps speeds
Aggregates licensed and unlicensed spectrum

2x capacity and range
Over Wi-Fi capacity in dense deployments

Seamless and robust user experience
With reliable licensed spectrum anchor

Single unified LTE network
Common management

Fair Wi-Fi coexistence
Fundamental design principle

1 Assumptions: 3GPP LAA evaluation model based on TR 36.889, two operators, 4 small-cells per operator per macro cell, outdoor, 40 users on same 20 MHz channel in 5 GHz, both uplink and downlink in 5 GHz, 3GPP Bursty traffic model 3 with 1MB file, LWA using 802.11ac, DL 2x2 MIMO (no MU-MIMO), 24dBm + 3dBi Tx power in 5 GHz for LAA eNB or Wi-Fi AP.
Scaling to connect the Internet of Things

<table>
<thead>
<tr>
<th></th>
<th>LTE Advanced (Today+)</th>
<th>LTE Cat-1</th>
<th>eMTC (Cat-M1)</th>
<th>NB-IOT (Cat-M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>10 Mbps</td>
<td>Up to 10 Mbps</td>
<td>Up to 1 Mbps</td>
<td>10s of kbps to 100s of kbps</td>
</tr>
<tr>
<td></td>
<td>n x 20 MHz</td>
<td>20 MHz</td>
<td>1.4 MHz narrowband</td>
<td>180 kHz narrowband</td>
</tr>
</tbody>
</table>

LTE Advanced (Today+)

- Mobile
- Video security
- Wearables
- Object Tracking
- Utility metering
- Environment monitoring
- Connected car
- Energy Management
- Connected healthcare
- City infrastructure
- Smart buildings

LTE IoT (Release 13+)

- Significantly widening the range of enterprise and consumer use cases
Our 5G vision: a unifying connectivity fabric

Enhanced mobile broadband
- Multi-Gbps data rates
- High capacity
- Deep awareness

Higher reliability services
- Lower latency
- Higher reliability
- Higher availability
- Stronger security

Massive Internet of Things
- Lower cost
- Lower energy
- Deeper coverage
- Higher density

Unified design for all spectrum types and bands from below 1GHz to mmWave
Scalable across a broad variation of requirements

- **Deeper coverage**
 - To reach challenging locations

- **Wide area**

- **Internet of Things**

- **Higher-reliability control**

- **Enhanced mobile broadband**

- **Enhanced capacity**
 - 10 Tbps per sq. km

- **Enhanced data rates**
 - Multi-Gigabits per second

- **Lower energy**
 - 10+ years of battery life

- **Lower complexity**
 - 10s of bits per second

- **Higher density**
 - 1 million nodes per sq. km

- **Enhanced capacity**
 - 10 Tbps per sq. km

- **Stronger security**
 - Used in health/government/financial applications

- **Higher reliability**
 - > 99.999% packet success rate

- **Lower latency**
 - As low as 1 millisecond

- **Frequent user mobility**
 - Or no mobility at all

- **Better awareness**
 - Discovery and optimization

This presentation addresses potential use cases and potential characteristics of 5G technology. These slides are not intended to reflect a commitment to the characteristics or commercialization of any product or service of Qualcomm Technologies, Inc. or its affiliates.
Diverse spectrum types and bands
From narrowband to ultra-wideband, TDD & FDD

<table>
<thead>
<tr>
<th>Licensed Spectrum</th>
<th>Shared Licensed Spectrum</th>
<th>Unlicensed Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleared spectrum</td>
<td>Complementary licensing</td>
<td>Multiple technologies</td>
</tr>
<tr>
<td>EXCLUSIVE USE</td>
<td>SHARED EXCLUSIVE USE</td>
<td>SHARED USE</td>
</tr>
</tbody>
</table>

- **Below 1 GHz**: longer range, massive number of things
- **Below 6 GHz**: mobile broadband, higher reliability services
- **Above 6 GHz including mmWave**: for both access and backhaul, shorter range
A new 5G unified air interface is the foundation

Diverse spectrum
- Licensed, shared licensed, and unlicensed spectrum
- Spectrum bands below 1 GHz, 1 GHz to 6 GHz, & above 6 GHz (incl. mmWave)
- FDD, TDD, half duplex

Diverse services and devices
- From wideband multi-Gbps to narrowband 10s of bits per second
- Efficient multiplexing of higher-reliability and nominal traffic
- From high user mobility to no mobility at all
- From wide area macro to indoor / outdoor hotspots

Diverse deployments
- Device-to-device, mesh, relay network topologies
Optimized waveforms and multiple access

With heavy reliance on the OFDM family adapted to new extremes

OFDM family the right choice for mobile broadband and beyond

- Scalable waveform with lower complexity receivers
- More efficient framework for MIMO spatial multiplexing – higher spectral efficiency
- Allows enhancements such as windowing/filtering for enhanced localization
- SC-OFDM well suited for uplink transmissions in macro deployments

Resource Spread Multiple Access (RSMA) for target use cases

Enable asynchronous, non-orthogonal, contention-based access that is well suited for sporadic uplink transmissions of small data bursts (e.g. IoT)
Support diverse spectrum bands and bandwidth

Scalable bandwidth with 2^K subcarrier spacing

- Efficiently address range of available bandwidths, from < 1GHz to >6GHz
- Maximum FFT size, e.g., 4096, leveraged across bands and bandwidths
- Natural scaling of CP with subcarrier spacing
- Address coherence bandwidth and delay spread for different bands & deployments
- Improve processing timeline by front load control/pilot with small symbol granularity for fast HARQ turn-around

Example usage models and channel bandwidths
Support diverse latency and QoS requirements

Scalable TTI and numerology

- 2^N TTI per 1 ms
 - Combination with 2^K scalable subcarrier spacing allows nesting of smaller TTI numerologies into larger ones with guaranteed periodic overlap of control
 - Other TTI durations via bundling is possible

- Symbol duration = 2^{-M} ms
 - Allows finest possible granularity with TTIs scaling down to single symbol
 - Benefits low-latency in larger delay spread environments
 - Numerology multiplexing further simplified due to alignment every 2^M symbols
A more flexible framework with forward compatibility

Designed to multiplex envisioned & unforeseen 5G services on the same frequency

Integrated framework
That can support diverse deployment scenarios and network topologies

Higher-reliability transmissions
May occur at any time; design such that other traffic can sustain puncturing\(^1\)

Forward compatibility
With support for blank subframes and frequency resources for future services/features

Scalable transmission time interval (TTI)
For diverse latency requirements — capable of latencies an order of magnitude lower than LTE

Blank subcarriers

Blank subframes

D2D

Multicast

WAN

Scalable TTI

Scalable numerology

1 Nominal 5G access to be designed such that it is capable to sustain puncturing from higher-reliability transmission or bursty interference
Natively incorporate advanced wireless technologies

Many technology enablers to meet 5G requirements and services

- Coordinated Spatial Techniques
- Full Self-Configuration
- Hyper dense deployments
- Integrated access and backhaul
- mmWave
- Multicast
- Advanced Receivers
- Massive MIMO
- More energy efficient, lower cost IoT communications
- Multi-hop & D2D communications
- Low latency & more-reliable communication
- Beamforming
- V2X

Across diverse spectrum bands and types
Massive MIMO at 4 GHz allows reuse of existing sites
Leverage higher spectrum band using same sites and same transmit power

Macro site
1.7 km inter-site distance
46 dBm transmit power

Significant Capacity Gain
Average Cell Throughput = 808 Mbps in 80 MHz

Significant Gain in Cell Edge User Throughput

Source: Qualcomm Technologies, Inc. simulations; Macro-cell with 1.7km inter-site distance, 10 users per cell, 46 dBm Tx power at base station, 20MHz@2GHz and 80MHz@4GHz BW TDD, 24x Massive MIMO
Realizing the mmWave opportunity for mobile broadband

The enhanced mobile broadband opportunity
- Large bandwidths, e.g. 100s of MHz
- Multi-Gbps data rates
- Flex deployments (integrated access/backhaul)
- Higher capacity with dense spatial reuse

The challenge—‘mobilizing’ mmWave
- Robustness results from high path loss and susceptibility to blockage
- Device cost/power and RF challenges at mmWave frequencies

5G Solutions

Smart beamforming & beam tracking
Increase coverage and minimize interference

Tighter interworking with sub 6 GHz
Increase robustness and faster system acquisition

Phase noise mitigation in RF components
lower cost, lower power devices
Making mmWave a reality for mobile

Qualcomm Technologies, Inc. is setting the path to 5G mmWave

60 GHz chipset commercial today for mobile devices

Developing robust 5G mmWave for enhanced mobile broadband

Qualcomm® VIVE™ 802.11ad technology with a 32-antenna array element

28 GHz outdoor example with ~150m dense urban LOS and NLOS coverage using directional beamforming

Qualcomm VIVE is a product of Qualcomm Atheros, Inc.;
^ Based on Qualcomm Technologies Inc. simulations

Manhattan 3D map
Results from ray-tracing

0.705 inch

0.28 inch
5G standardization for 2020 launch

Note: Estimated commercial dates; \(^1\) Forward compatibility with R16 and beyond
Multi-connectivity across bands & technologies
4G+5G multi-connectivity improves coverage and mobility

- 4G & 5G macro coverage
- Simultaneous connectivity across 5G, 4G and Wi-Fi
- 4G & 5G small cell coverage
- 5G carrier aggregation with integrated MAC across sub-6GHz & above 6GHz

Leverage 4G investments to enable phased 5G rollout
Designing a unified platform for the next decade & beyond

The 5G Unified Air Interface is the foundation
Optimized OFDM-based waveforms under a flexible framework that can scale to support diverse requirements

Also, leveraging a multi-connectivity framework that makes full use of 4G LTE and Wi-Fi investments

And delivering a flexible network architecture for dynamic creation of tailored services
5G: From Concept to Reality

May 23, 2016
Arun Ghosh
Director Advanced Wireless Technology Group
AT&T Labs
Key Drivers to 5G

- Massive Connectivity
- Throughput & Capacity
- Latency
- 100x Traffic
- >100 Mbps Everywhere
- 4K Video
- Augmented Reality
- Cloud Computing
- Industrial Automation
- V2V
- IoT
- Sensor Network
- Smart Grid
- Healthcare
- Unlicensed mmWave Access
- WiFi
- Pico Sub 6GHz
- Macro Sub 6GHz
- Pico mmWave
- 5G
- 4G
- 1/10
- 1000
- 1000
- 1000
Key Enablers for 5G

Multi-Antenna
- Massive MIMO
- Active Antenna
- Multiple antenna models
- MU centric

Densification
- Self-Backhaul
- Adapts to Transport Requirements
- Energy Efficiency

Forward Compatible
- Accommodate new numerology
- Accommodate new frame structure
- Use case specific PHY

SDN/NFV
- More open interfaces than LTE
- Separation of control and user plane

Massive Connectivity
- Rel 13 provides a IoT starting point
- Enable future new service classes
- Asynchronous massive connectivity
Standardization Aspects of 5G RAT
Standards and Trial Activity Timeline

- **2016**
 - 3GPP Activity

- **2017**
 - SI

- **2018**
 - WI Phase 1
 - WI Phase 2

- **2019**
 - Experimental Testbed Multi-Phases
 - Friendly User Trial
 - Pilots

- **2020**
 - Rel 17+
Key Components of NR Currently in Standardization

Currently being discussed in 3GPP SI
Well understood options/choices

Very critical to design these components the right way to have a design that will be future proof (scope of this presentation)
Forward Looking Design

Flexible UE Specific Numerology

Wide Subcarrier (emBB)
Narrow Subcarrier (mMTC)
Large CP (Broadcast)

Sub-Band filtering/windowing is used to mitigate the interference between flexible subcarriers

Self Contained Sub-Frames

Each transaction (DL/UL data or measurement) is contained within a sub-frame
MIMO Framework

LTE Rel 10
- 8 Tx
- Fixed codebook
- Azimuth beamforming
- SU-MIMO Feedback
- Explicit RS

LTE Rel 13 (FD-MIMO)
- 16 Tx
- Reconfigurable codebook
- Azimuth + Elevation beamforming
- SU-MIMO Feedback
- Explicit RS (separable in V and H)

NR Rel 15
- Large number of Tx (128 – 256)
- Hybrid-beamforming
- Distributed MIMO
- Programmable codebook
- New feedback mechanism (analog)?
- Azimuth + Elevation beamforming
- MU-MIMO feedback
- Scalable and hierarchical RS and beamforming design
Ultra-Dense Self-Backhaul (in-band and out-of-band)

- Simplifies transport and increases placement flexibility for ultra-scalable density
- mmWave high resolution beamforming provides a natural isolation of backhaul and access
- Should allow for fast switching and re-routing to mitigate dynamic blocking in mmWave
- L1 design (numerology, RS density, frame structure) can be different for access and backhaul

- Multi-hop multi-stage scheduling and QoS control
- Fast (L1 or L2) based switching to support concept such as UE centric virtual cell
- Flow-control on each hop
- Shared cell ID or separate cell ID

Is self-backhauling the same as relays???
Network Architecture and NFV Readiness

- Future proof design (flexible numerology and self contained frame structure)
- Minimize transmission of continuous signal and deliver most signal in a UE specific context
- No predefined timing relationship in the protocol (elastic design for flexible transport capability)
- Hierarchical RAN architecture
eLTE and NR Comparison

- NR is a non-backwards compatible 5G RAT that covers from 600MHz to 100GHz
- LTE will continue to evolve as well (eLTE)
 - New features and new interface to the 5G packet core

<table>
<thead>
<tr>
<th>Latency</th>
<th>eLTE 5 msec</th>
<th>5G 1 msec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>eLTE 20MHz</td>
<td>5G >100MHz</td>
</tr>
<tr>
<td>Connectionless support</td>
<td>eLTE: No</td>
<td>5G: Yes</td>
</tr>
<tr>
<td>L1 Numerology</td>
<td>eLTE: fixed</td>
<td>5G: flexible</td>
</tr>
</tbody>
</table>

- Should support UE (or use case) specific L1 (network slicing)
- Should allow for asynchronous UL access (for massive IoT)
- Should allow for arbitrary combination of non-contiguous spectrum in L1
Trials and Testbed Activities
AT&T 5G Testbed Development

Planning + Spectrum

2016

- Evaluate very basic components of 5G RAT e.g. hybrid beamforming, mmWave, link adaptation & mobility
- Test simple application such as 4K HD video

2017

- Evaluate more complex components such as dynamic TDD, self-backhauling, coordination, CoMP, handoff
- Test QoS based video and other high bandwidth services

- Evaluate 4G/5G co-existence and spectrum sharing, dual connectivity
- Test new classes of applications such as AR/VR, MEC based services, V2X

macro
15GHz + 28GHz

macro + pico
28GHz

macro + pico
mmWave + sub 6GHz