Realizing LTE: Understanding the Challenges and Planning for LTE Introduction

Maria E. Palamara
Director - CDMA-LTE Strategy
Alcatel-Lucent
January, 2009
1. Market Backdrop & Key Challenges of LTE Evolution
2. Managing Technology Risk
3. Making the Most out of Available Spectrum
4. Assuring Service Quality During the Transition
5. Summary
Market Backdrop
Market Highlights

Big Events of 2008 in North America

- FCC Auction of 700 MHz Spectrum
 - Verizon and AT&T are big winners
- Verizon Announcement of LTE Plans
 - Aggressive plans for nationwide LTE deployment in 700 MHz
- Major Economic Slowdown & Recession
 - CAPEX spending cutbacks affect vendors
- Open Access in Mobile gains Momentum
 - Market Success of the 3G iPhone and Advent of Google’s Android
 - Rise of the non-operator “application stores”
- AT&T launches HSPA widely,
 Sprint/Clearwire launches WiMAX selectively
 - The High Speed Data Marketing wars continue
- Increased attention on reducing CAPEX and OPEX

Planning evolution to LTE has become a major consideration for operators
Mobile Data Explosion
The iPhone Phenomenon

Apple reports they have shipped 4M iPhones (Feb08)
- ATT claim they have activated ~2M
 - Analyst claims 20% unlocked
- Number 2 seller of smart phones in the US (28%), behind BlackBerry (41%)
- Target is 10M sales by end of 2008

Business Model
- Apple controls applications
- Apple splits application revenue 30% Apple, 70% application vendor
- AT&T gets data airtime revenue

What makes the iPhone so compelling?

Apple continues to extend and innovate:
- Data functionality:
- Usability: Improving power and storage
- Applications: Exchange email, SDK for appl developers
- Ecosystem: Web sites specifically designed for iPhone
Key Challenges in Migrating to LTE

Top 5 Operator Worries:
- Cost effective evolution to LTE & IMS
- Spectral Efficiency
- Service Quality
- Rural and Indoor Coverage Performance
- CAPEX and OPEX Efficiency

Evolving to LTE... Managing the Challenges:
- Managing Technology Risk
- Maximizing Spectrum Utilization
- Maintaining Network & Service Quality During Transition
- Managing Capital Expenditures
- Controlling Backhaul Costs
- Developing a Device Ecosystem

Minimize Cost Per Data Bit to Support Profitability in an Open Access Environment
Managing Technology Risk
Alternate Risk Management Strategies
Transforming to an All IP Mobile Network

<table>
<thead>
<tr>
<th>Lots of Spectrum Aggressive Migration Strategy</th>
<th>Constrained Spectrum Conservative Migration Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Start with existing CDMA voice/data network</td>
<td>1. Start with existing CDMA voice network</td>
</tr>
<tr>
<td>2. Upgrade to EVDO or A for data, start IP transformation in radio access & backhaul</td>
<td>2. Add LTE carrier for data (full footprint deployment), improving competitiveness with mobile handsets</td>
</tr>
<tr>
<td>3. Add EVDO VoIP and IMS, starting IP transformation at service layer</td>
<td>3. Implement CDMA 3G1x voice capacity enhancements, clearing additional spectrum for LTE data</td>
</tr>
<tr>
<td>4. Gradually add LTE, improving profitability of access in high use areas first</td>
<td>4. Gradually rescale LTE bandwidth as CDMA spectrum clears, and migrate applications to LTE</td>
</tr>
<tr>
<td>5. Expand LTE to ubiquitous network, as user demand dictates</td>
<td>5. Add IMS and VoIP to LTE to offer simultaneous voice & data</td>
</tr>
<tr>
<td>6. Eventually, full replacement of CDMA network when users are all migrated</td>
<td>6. Eventually, full replacement of CDMA when LTE voice is proven</td>
</tr>
</tbody>
</table>

LTE VoIP capacity & quality will determine when significant voice transition will begin
Alternate Risk Management Strategies
Transforming to an All IP Mobile Network

Early LTE adopters
Aggressive Migration Strategy

1. Start with existing GSM/W-CDMA voice/data network
2. Deploy LTE in new bands in overlay as a complement of 2G/3G network capacity for data in hot zones
3. New AWS/700MHz band or unused band for 2G/3G
4. Expand LTE to ubiquitous network, as user demand dictates
5. Eventually, full replacement of W-CDMA network when users are all migrated

HSPA+ adopters
Conservative Migration Strategy

1. Start with existing GSM/W-CDMA voice/data network
2. Deploy HSPA+ in dual band networks
3. Deploy LTE in later stage using new bands as a complement of HSPA+ (capacity)
4. High band (AWS/1.9GHz) coupled with low band (700/850MHz) for better coverage
5. Growing existing HSPA capacity and deploy LTE ready modules
6. Eventually, full replacement of W-CDMA network when users are all migrated

Operator focus in 2009 on HSPA+ or LTE but not both simultaneously
Making the Most of Available Spectrum
LTE Spectrum Options

LTE deployable in any of the “3GPP” bands,... (and more)

- **FDD**: 2.6 GHz, 2.3 GHz, 2.1 GHz, 1.9 GHz, 1.8 GHz, 1.7 GHz, 1.5 GHz, 900 MHz, 850 MHz, 700 MHz, 450 MHz....
- **TDD**: 2.6 GHz, 2.3 GHz, 1.9/2.1 GHz....

North America
- **Initial LTE**: AWS, 700 MHz
- **Future**: 850 MHz (re-farm), 1.9 GHz (re-farm)

Europe, Middle East, Africa
- **Initial LTE**: 2.1 GHz, 2.6 GHz
- **Future**: 900 MHz (re-farm), 1.8 GHz (re-farm)
- **Future**: 450 MHz (re-farm), 470-854 MHz (digital dividend)

Asia Pacific
- **Initial LTE**: 1.5 GHz (Japan), 2.6 GHz (Japan)
- **Future**: 2.1 GHz (Japan), 2.3-2.4 GHz (China)
- **Future**: 470-854 MHz (digital dividend)
- **Future**: 1.8 GHz (re-farm)

Note: Represents estimated timeframe of when spectrum will become available for LTE deployment.
CDMA to LTE Migration in a 5 MHz Band

- The above carrier assignments consider CDMA block-edge guard band, inter-channel guard band, CDMA/LTE channel raster and CDMA/LTE channel bandwidths.
- The required guard band between LTE and CDMA carriers depends on the LTE UE transmitter emission mask requirement which is not defined or finalized in TS 36.101.
Assuring Service Quality During Transition
3G to LTE Seamless Mobility - Value Proposition

3G/LTE Seamless Mobility will be critical for a successful LTE deployment
- LTE technology deployment will likely occur in stages...high data traffic areas first
- Users will continue to demand uninterrupted coverage
- 3G/LTE Interworking assures market competitiveness during the transition
LTE to W-CDMA Interworking - 3GPP Release 8

Requires legacy RNC upgrade to support S12 interface

Requires legacy SGSN to upgrade to support S3 & S4 interfaces

LTE: Long Term Evolution
MME: Mobility Management Entity
NB: Node B
PDN GW: Packet Data Network Gateway
RNC: Radio Network Controller
SGSN: Serving GPRS Support Node
SGW: Serving Gateway
UE: User Equipment
W-CDMA: Wideband CDMA

BSC: Base Station Controller
BTS: Base Transceiver Station
GGSN: Gateway GPRS Support Node
IM: Internet
IMS: IP Multimedia Subsystem
LTE/LTE: Long Term Evolution
S1/S1: S1 Interface
S3/S3: S3 Interface
S4/S4: S4 Interface
S5/S8/S5/S8: S5/S8 Interface
S11/S11: S11 Interface
SGi: SGI Interface
Gi: Gi Interface
S1-U: S1-U Interface

BSC: Base Station Controller
BTS: Base Transceiver Station
GGSN: Gateway GPRS Support Node
LTE: Long Term Evolution
MME: Mobility Management Entity
NB: Node B
PDN GW: Packet Data Network Gateway
RNC: Radio Network Controller
SGSN: Serving GPRS Support Node
SGW: Serving Gateway
UE: User Equipment
W-CDMA: Wideband CDMA

SGi: SGI Interface
Gi: Gi Interface
S1-U: S1-U Interface
S11: S11 Interface
S3: S3 Interface
S4: S4 Interface
S5/S8: S5/S8 Interface
S12: S12 Interface

LTE- W-CDMA UE
W-CDMA UE

15 Challenges of LTE Migration | January 2009
All Rights Reserved © Alcatel-Lucent 2009
Subscribers with LTE will be anchored on PDN GW which will support GGSN Features (Gn).

Direct tunnel from 3G RNC will be supported on PDN GW (setup and managed by legacy SGSN).

Introduce Gn on MME for inter-RAT mobility.

Subscribers with no LTE remain on legacy GGSN.
eHRPD: Enabling Seamless Mobility & Handoff Between EV-DO & LTE

- Enhances traditional EV-DO (HRPD) to enable future seamless IP mobility with LTE based on 3GPP Standards for enhanced Packet Core (ePC)
- Moves the IP mobility anchor out of the Home Agent and into the PDN-Gateway
- Changes from a client-Mobile IP based IP Mobility model to Proxy Mobile IP.
 - No more foreign agent
 - the HSGW implements Proxy Mobile IP
 - the handset uses Simple IP
- Uses EAP-AKA for RAN authentication
 - Instead of PAP/CHAP, EAP-AKA conforms to 3GPP standards
- Leverages IPv6, although IPv4 could also be used with eHRPD
 - Enables larger IP address space for mobiles, and simplifies security
ALU is pioneering cost-effective multimode solutions for HRPD/LTE in standards and network and handset product solutions.
What about voice?

LTE only for voice and data?
Or LTE data and traditional 3G1x, GSM or W-CDMA voice?

Factors to consider:
- How important is simultaneous voice & data?
- How important is an all-IP service model?
- CAPEX spending priorities?
- Maximize voice capacity?
- Roaming Partners?
- Handset complexity?
- Timing?

GSM Voice?
3G1x CS Voice?
1x Advanced?
LTE VoIP?
EVDO VoIP?
HSPA VoIP?
W-CDMA CS Voice?
3G1x and LTE Voice Interworking: Circuit Switch Fallback

GSM & W-CDMA Have Similar Solutions to Enable Voice Interworking with LTE

Use case: LTE is used for Data only, and 3G1x circuit voice is used for all voice calls. LTE coverage overlaps 3G1x coverage. No IMS VoIP is required, however dual mode handsets will not be capable of simultaneous voice and data service.
IMS-Based VoIP Enables A Seamless User Experience
A Core Network & Service Investment that is NGWN-Ready & Access Agnostic

IMS VoIP will enable a seamless user experience for multimedia services. Operators gain critical experience for LTE ALL-IP

Application Servers
(Telephony, Video, Messaging, 3G-NGWN Interworking, PoC, etc.)

IMS Infrastructure

PDN Gateway, Media GW, MRF

Broadband IP Access

Home
802.11 or Femto Cell

Anywhere
EVDO/HSPA or LTE

Enterprise Office
VoIP

Multi – Mode Handset
3G/NGWN

NGW RAN will coexist with 3G access for some time. ALU proven expertise in Interworking across access technologies will make this a seamless user experience
Keeping Competitive During the transition

Leverage all existing assets to maximum advantage!
- Voice and data
- Interwork existing technologies with LTE as efficiently as possible

Don’t drop the ball on competitive user services!
- Develop a plan to address subscriber demands for innovative services
- advanced services and devices

Millennials (11-30 years old)

The addressable market for Next Generation Wireless!
- Over the next 5 years they will transform the way in which voice and data services are accessed and used
- As the Millennials age, their consumer behaviour will translate into the enterprise
- Current behavior in using technology, applications, and devices will continue into their adult lives and become the norm

![Millennials logos]

Orb, Twitter, World of Warcraft, Sling Media, Flickr, Second Life, Google, Facebook, YouTube, Myspace

Broadcast Yourself, a place for friends